
1

MURPHI BUSTS AN ALTITUDE: A MURPHI ANALYSIS OF AN
AUTOMATION SURPRISE∗

Everett Palmer, NASA Ames Research Center, Moffett Field, California

∗ This work was supported by the Human-Automation Integration Project of NASA's Aerospace Operations System R & T Base
Program.

Introduction

In training and during operations, users
of automatic systems form expectations of how
automatic systems respond to their control
inputs and to environmental disturbances.
These expectations form the basis for what can
called the operator's "mental model" of the
system. An "automation surprise" is said to
occur when the automation behaves in a
manner different from what the operator
expects. A requirement for a properly
functioning human-machine system is that the
human operator have good situation awareness.
A key component of an operator's situation
awareness is knowing how the machine will
behave in the near future. Automation
surprises are situations in which this system
requirement has failed. In this paper, the
modeling language -- Murphi -- is used to
model and analyze an automation surprise in
which a flight crew, using the autopilot, climbs
above their cleared altitude during a full
mission flight simulation.

Murphi is a system description language
and model checker developed by software
engineers to formally evaluate behavioral
requirements for concurrent software processes
[2]. Formal methods allow designers to state
and test the validity of general requirements
such as, "the autoflight system will never fly
the aircraft through the altitude set in the
altitude window." A rule-based model of the
autopilot system and the pilot was developed.
Murphi was then used to automatically check
the validity of the above requirement for a
model of the pilot-autopilot-aircraft system.

The requirement failed for the same sequence
of human and machine events that were
recorded in the altitude bust incident. The
Murphi model was then modified to explore
possible procedural and mode logic fixes to
reduce the likelihood of this type of breakdown
in the human-machine system.

Other applications of formal software
engineering methods to this and other problems
of automation surprises and mode confusion
are described in [4, 5, 6 & 8].

Key Incident Events During the
Altitude Bust

The incident took place during a high
workload flight segment. The crew had just
made a missed approach and had been cleared
to climb to 5,000 feet. The captain correctly set
the target altitude of 5,000 feet in the
autopilot's "Mode Control Panel (MCP)" and
engaged the "Vertical Speed" pitch autopilot
mode to climb at about 2,000 feet per minute.
The autopilot was armed to automatically
capture the cleared altitude. At about 4,000
feet, the pilot changed the pitch mode to IAS.
Altitude capture was still armed. Three
seconds later the pitch mode automatically
changed to "Altitude Capture." This pitch
mode smoothly reduces the aircraft's vertical
velocity until the aircraft is flying level at the
target altitude. This mode change also disarms
the altitude capture. A fraction of a second
later the captain adjusted the vertical speed
wheel. This caused the autopilot to switch to
the Vertical Speed mode but now altitude

2

capture was no longer armed and the autopilot
was set to climb with no altitude target.
Neither pilot took any action until the aircraft
was climbing through the cleared altitude. As
the aircraft simulator climbed through the
cleared altitude of 5,000 feet, the captain
exclaimed, "Five thousand. Oops, it didn't
arm." indicating both a misunderstanding of
what happened and providing evidence of an
automation surprise. This altitude bust incident
is described in more detail in [7].

Figure 1 is a finite state diagram of the
pitch autopilot modes. This logic diagram was
reverse engineered from the flight manual and a
video tape of the flight mode annunciator. It is
undoubtedly is a simplification of the actual
system but does capture the automation
behavior necessary to understand this incident.

VERT SPEED
capture armed

ALT HOLD
capture not armed

IAS
capture armed

adjust
V/SPD

set new alt or
pull alt knob

set new alt or
pull alt knob

automatic
capture

adjust
V/SPD

automatic or
push HOLD

VERT SPEED
capture not armed

IAS
capture not armed

ALT HOLD
capture armed

ALT CAPTURE
capture not armed

adjust
V/SPD

adjust
V/SPD

push
IAS

push alt knob

push alt knob

push
IAS

push
IAS

push
IAS

push
HOLDpush

HOLD

push
HOLD

adjust
V/SPD

automatic
capture

push alt knob

set new alt or
pull alt knob

1

2

3

4

Figure 1. Pitch Autopilot Altitude Change
and Capture Modes. The numbers show the

sequence of state changes that occurred
during the incident.

This particular pilot error can be
described as a mode error. If the pilot had
adjusted the vertical speed wheel a few seconds
earlier, the result would have been only to
change to vertical speed mode at a slightly
different climb rate with the aircraft still
automatically leveling at the target altitude.
However, adjusting the vertical speed wheel
after the change to the altitude capture pitch
mode results in the aircraft continuing to climb
without an altitude limit. A mode error occurs
when an operator performs an action

appropriate for an expected mode but the
system is in a different mode for which the
action has undesirable consequences. The
automatic mode change to the altitude capture
mode that preceded the pilot's mode error can
be called a "silent" mode change. It is "silent"
because it occurs automatically with the only
indication being a visual change in the Flight
Mode Annunciator.

A Murphi Model of the Human-
Machine System

A Murphi model specifies the state
variables of the system, their values and rules
describing the conditions under which these
states variables can change.

The system states and their possible
values are defined as:
• Altitude {below_target, at_target, above_target}
• V_Speed: {level, climbing}
• In_capture_zone: {true, false}
• Pitch_mode: {vert_speed, alt_cap, alt_hold}
• Capture_armed: {true, false}

The following three rules describe
possible pilot actions. Note that these rules
specify only one sequential dependency, the
pilot must raise the target altitude before
adjusting the vertical speed. With this
exception, pilot actions can occur at any time
and in any order. Modeling possible pilot
actions as opposed to just nominal pilot actions
allows Murphi to automatically check system
behavior for any sequence of pilot actions.

rule "raise_target_altitude"
begin
 altitude := below_target;
 capture_armed := true;
end;

rule "adjust_vertical_speed"
begin
 if (altitude = below_target) then
 pitch_mode := vert_speed;
 v_speed := climbing;
 endif;

3

end;

rule "push_alt_hold"
begin
 pitch_mode := alt_hold;
 v_speed := level;
 in_capture_zone := false;
end;

The following four rules describe the
automatic behavior of the pitch autopilot.

rule "in_capture_zone"
begin
 if (altitude = below_target
 & v_speed = climbing) then
 in_capture_zone := true;
 if capture_armed then
 pitch_mode := alt_cap;
 capture_armed := false;
 endif;
 endif;
end;

rule "at_altitude_target"
begin
 if (pitch_mode = alt_cap
 & altitude = below_target
 & v_speed = climbing) then
 pitch_mode := alt_hold;
-- capture_armed := false;
 altitude := at_target;
 v_speed := level;
 in_capture_zone := false;
 endif;
end;

rule "almost_bust"
begin
 if (altitude = below_target
 & v_speed = climbing
 & pitch_mode = vert_speed
 & in_capture_zone) then
 altitude := at_target;;
 endif;
end;

rule "altitude_bust"
begin
 if (altitude = at_target
 & v_speed = climbing) then
 altitude := above_target;
 error "altitude_bust";
 endif;
end;

This model leaves out the "IAS" pitch
mode. This simplification does not affect the
important behavior for modeling this system.
The model also only models the human-
machine system during the climb. During a
climb the aircraft should never climb above the
target altitude. In this model, it is an error if
the state variable "altitude" is ever equal to
"above_target."

A Murphi model can be run in either
simulation or verification mode. In simulation
mode, Murphi selects at random among rules
whose conditions are satisfied. In verification
mode, Murphi performs an exhaustive search to
determine if a sequence of rule firings exists
that will take the system from the start state to
an error state. Starting in level flight, Murphi
identifies the following sequence of rule firings
that leads to the aircraft being above its target
altitude: 1) raise_target_altitude, 2)
adjust_vertical_speed, 3) in_capture_zone, 4)
adjust_vertical_speed, 5) almost_bust, and 6)
altitude_bust. The key event (#4) leading to the
error state is adjusting the vertical speed wheel
after the autopilot automatically transitions to
the altitude capture pitch mode. These events
and the resulting state changes are shown in
figure 2.

At_target
Level
Alt_hold
Zone=no
Not_armed

below_target
Level
Alt_hold
Zone=no
armed

below_target
climbing
Vertical_speed
Zone=no
armed

below_target
climbing
Alt_capture
Zone=yes
Not_armed

At_target
Level
Alt_hold
Zone=no
Not_armed

below_target
climbing
Vertical_speed
Zone=yes
Not_armed

above_target
climbing
Vertical_speed
Zone=yes
Not_armed

1. Raise target altitude
2. Adjust vertical speed
3. Automatic switch to Altitude Capture Mode

4. Adjust vertical speed
5. Bust altitude

Incident Events

1 2

3

4

5

Usual
Behavior

Figure 2. The sequence of state variable
changes and human-machine events leading

to the altitude bust.

We can now ask what went wrong and
use Murphi to model and analyze possible
procedural and autopilot mode logic changes

4

that could reduce the likelihood of this type of
breakdown of this normally error-tolerant
human-machine system.

What went wrong? ... What can be
done?

In this incident the autopilot performed
exactly as it was designed to perform. It is
interesting to ask what it is about the pilot-
autopilot-aircraft system design that makes the
system prone to this type of automation assisted
altitude bust.

Pilot error & procedural changes:

It is easy, though not very useful, to put
the blame on pilot error. The flight operations
manual contains a specific warning that
adjusting the vertical speed while the aircraft is
in altitude capture mode can lead to an altitude
deviation. Still it is possible to use Murphi to
evaluate two procedural fixes. One procedural
change is for the pilot to check the Flight Mode
Annunciator after any change to the autopilot
controls and if altitude capture is not armed
then rearm it. The following Murphi pilot rule
captures this idea:

rule "rearm_altitude_capture"
begin
 if (altitude = below_target
 & pitch_mode = vert_speed
 & capture_armed = false) then
 capture_armed := true;
 endif;
end;

This rule prevents the human-machine
system from busting the target altitude if the
"pilot" remembers to check if altitude capture is
armed or not. Another procedural change is to
modify the "adjust_vertical_speed" rule to
rearm altitude capture whenever the vertical
speed is adjusted. A Murphi verification
analysis indicates that this change would be
effective but the problem in a real system

would be in training pilots to reliably perform
this action which is almost never required.

Autopilot mode logic changes:

Murphi can also be used to explore
possible changes to the autopilot logic. We can
impose a design requirement that no sequence
of pilot inputs to the autopilot will result in the
autopilot flying the aircraft through the target
altitude. Our objective is to modify the mode
logic so that the pilot can change a subgoal, the
vertical velocity at which the aircraft is
climbing, with out inadvertently canceling the
main goal of capturing the cleared altitude.

One way to accomplish this to modify
the system so that altitude capture remains
armed until the target altitude is reached. In
the Murphi model this can be done by moving
the action "capture_armed := false;" from the
rule "in_capture_zone" to the rule
"at_target_altitude." The single rule for
adjusting vertical speed is split into the
following two rules. The first rule models the
case where the new vertical speed leaves the
aircraft in the capture zone. The autopilot logic
stays in the altitude capture pitch mode. The
second rule covers the case where pilot lowers
the vertical velocity to a value that result in the
aircraft leaving the capture zone. The logic
changes to the vertical speed pitch mode.

rule "adjust_vertical_speed_1"
begin
 if (altitude = below_target) then
 pitch_mode := vert_speed;
 v_speed := climbing;
 if (in_capture_zone & capture_armed) then
 pitch_mode := alt_cap;
 endif;
 endif;
end;

5

-- The pilot adjusts vertical_speed to a lower
-- value that results in not meeting the criteria
-- for being in the capture zone.

rule "adjust_vertical_speed_2"
begin
 if (altitude = below_target) then
 pitch_mode := vert_speed;
 v_speed := climbing;
 if in_capture_zone then
 in_capture_zone := false;
 endif;
 endif;
end;

Running Murphi in verification mode
with these modifications to the altitude capture
logic shows that the pilot can adjust the
aircraft's vertical velocity at any time without
risking that the autopilot will climb above the
target altitude.

The differences between the original
and the revised design highlight an interesting
design tradeoff. The revised design makes it
more difficult for the pilot to inadvertently
climb above an assigned altitude but it also
makes it more difficult for the pilot to
intentionally override the capture maneuver and
continue climbing. With the revised design in
order to override the capture, the pilot has to
either raise the target altitude and select a climb
mode. This design has the advantage of
requiring an explicit pilot action to change the
primary goal of climbing to a target altitude.
The disadvantage is that more actions are
required.

Discussion

It is difficult to know exactly what a
pilot's expectations of the autopilot system
should be but a reasonable assumption is that
the pilot will expect that the autopilot will
attempt to achieve the goal that it has been set
up to perform. In this case, the pilot having
correctly set the autopilot up to climb to the
target altitude of 5,000 feet could be assumed
to have the expectation that the autopilot would

perform this task unless specifically instructed
otherwise. The pilot did adjust the way in
which the autopilot should perform the climb
but never explicitly changed the goal of
climbing to the target altitude.

The philosopher, Daniel Dennett, uses
the term "intentional stance" to refer to this
approach to predicting the behavior of people
or man-made systems. Taking an "intentional
stance" is a strategy for predicting the behavior
of people or machines that we assume have
been rationally designed. The autopilot is
designed to perform specific tasks such as
climbing to and maintaining a specified
altitude. A reasonable expectation for the pilot
is that the system will attempt to perform the
task that has specified. Changing a subgoal,
the vertical speed, should not negate the
primary goal of climbing to the target altitude.

Designing autopilot flight mode
annunciator displays to more explicitly indicate
the intentions of the automation has been
shown to result in more accurate predictions of
machine behavior by pilots [3].

Concluding Remarks

The Murphi modeling system appears
promising as a way to analyze the possible
behavior of human-machine systems and to
design automation behavior that is less likely to
surprise it's human operators.

Murphi provided a straightforward
language to model possible machine and
human behavior. The Murphi language has the
advantage of allowing minimal constraints on
pilot behavior. This allows the implications of
all possible, not just nominal, pilot behavior to
be explored. For example, the model of the
pilot put no restrictions on when or how often
the pilot could change the target altitude or
adjust the vertical velocity.

6

This autopilot design problem is a good
demonstration that solving a human factors
problems may not be just a matter of more
training, better procedures or even better
interface design. In this case, the best solution
appears to be to redesign the autopilot logic so
that the system behavior conforms to a
reasonable operator expectations.

References

[1] Daniel C. Dennett, The intentional stance,
MIT Press, 1987.

[2] David L. Dill. The Murphi verification
system. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided
Verification, CAV '96, volume 1102 of
Lecture Notes in Computer Science, pp.
390-393, New Brunswick, NJ, July/August
1996. Springer-Verlag. Information on
Murphi is available at http://sprout.
stanford.edu/dill/murphi.html.

[3] Michael Feary, McCrobie, D., Alkin, M.,
Sherry, L., Polson, P., Palmer, E., &
McQuinn (1998). Aiding vertical guidance
understanding. NASA TM 1998-112217,
Ames Research Center, Moffett Field, CA.
Available at http://olias.arc.nasa.gov/~feary
/aiding_vg/aiding_vg_understanding.html

[4] Denis Javaux and Peter G. Polson. A
method for pre-dicting errors when
interacting with finite state ma-chines. In
Denis Javaux, editor. Proceedings of the
3rd Work-shop on Human Error, Safety,
and System Development (HESSD’99),
University of Liege, Belgium, June 1999.

[5] Nancy G. Leveson and Everett Palmer.
Designing automation to reduce operator
errors. In Proceedings of the IEEE Systems,
Man, and Cybernetics Conference, October
1997. Available at http://www.cs.

washington.edu/research/projects/safety/
www/papers/smc.ps.

[6] Nancy G. Leveson, L. Denise Pinnel, Sean
David Sandys, Shuichi Koga, and Jon
Damon Rees. Analyzing software
specifications for mode confusion potential.
In C. W. Johnson, editor, Proceedings of a
Workshop on Human Error and System
Development, pp. 132–146, Glasgow, Scot-
land, March 1997. Glasgow Accident
Analysis Group, technical report GAAG-
TR-97-2. Available at http://www.cs.
washington.edu/research/projects/safety/
www/ papers/glascow.ps.

[7] Everett Palmer, "Oop's, it didn't arm." A
case study of two automation surprises.
Proceedings of the Eighth International
Symposium on Aviation Psychology, pp.
227-232, Columbus, Ohio, 1995. Available
at http://olias.arc.nasa.gov/~ev/
OSU95_Oops /PalmerOops.html.

[8] John Rushby, Using model checking to help
discover mode confusions and other
automation surprises, Proceedings of the
3rd Workshop on Human Error, Safety, and
System Development, University of Liege,
Belgium, 1999.

